

    
      
          
            
  
Welcome to jarjar’s documentation!

Jarjar is a python utility that makes it easy to send slack notifications to your teams.
You can import it as a python module or use our command line tool.


What Can Jarjar Do For Me?

Jarjar was developed at the Austerweil Lab at UW-Madison [http://alab.psych.wisc.edu/] as a tool
for scientists. We use it for all sorts of things, such as:


	Sending a message so that we know when long-running processes have finished.

[image: _images/simulations-complete.png]


	Sending notices when scheduled tasks have failed.

[image: _images/backups-failed.png]


	Sending out daily positive vibes.

[image: _images/positive-vibes.png]







Quickstart


Install

Installation is simple!

pip install jarjar





My guess is that you’ll want to create jarjar’s config file, .jarjar.
This tells jarjar what you’d like to use as a default for your slack team’s
webhook, the channel to post to, and the message it sends. Don’t worry, you can
over-ride these anytime.

Jarjar automatically looks for .jarjar in the current working directory as
well as the user home (~), so edit this snippet and throw it one of those
places:

channel='@username'
message='Custom message'
webhook='https://hooks.slack.com/services/your/teams/webhook'





If you don’t know your team’s webhook, you might have to
make one [https://my.slack.com/apps/A0F7XDUAZ-incoming-webhooks].




Python API

Use the jarjar python api like:

from jarjar import jarjar

jj = jarjar() # defaults from .jarjar
jj.text('Hi!')

# send an attachment
jj.attach({'meesa': 'jarjar binks'}, message='Hello!')





Jajrar also supports decorator and Jupyter magic workflows!




Command Line Tool

We also made a command line tool for use outside of python scripts.
The command line tool adds functionality to execute processes and send messages when they
are complete.


jarjar sleep 1 -m 'Meesa took a nap!'








And then in your slack team:


[image: _images/nap.png]



Custom attachments are not supported in the CLT at this time, but everything else is:


jarjar -m 'Meesa jarjar binks!'
jarjar -m 'Hi, everyone!!' --webhook '<your-url>' -c '#general'













Detailed Documention



	Installing jarjar

	Using the jarjar command line tool

	API Documentation

	Python API Workflows











          

      

      

    

  

    
      
          
            
  
Installing jarjar


Just use pip.

We’re on pypi [https://pypi.org/project/jarjar/].

pip install jarjar








Config File

You can use jarjar without a config file, but you’ll need to tell it your slack
webhook and channel each time.

You don’t want to live that way.

Jarjar looks to a special config file for a default webhook, channel, and
message values. You can over-ride anything in the config file any time but its
nice not to have your webhook in each script, amirite??

The file looks like:

channel='@username'
message='Custom message'
webhook='https://hooks.slack.com/services/your/teams/webhook'





Jarjar looks for values in descending order of priority:


	Any argument provided to jarjar().text() or jarjar().attach() at runtime.


	Any argument provided to jarjar() at initialization.


	Defaults within a file at a user-specified path (config='...'), provided to
jarjar() at initialization.


	Defaults within a config file .jarjar, in the working directory.


	Defaults within .jarjar, located in the user’s home directory (~).







Configuring Slack

For this to work in the first place, you need to set up a slack webhook for your team [https://my.slack.com/apps/A0F7XDUAZ-incoming-webhooks].

While you’re doing that, you can also specify a custom name and custom icon. We named our webhook robot jar-jar, and we used this icon [http://i.imgur.com/hTHrg6i.png], so messages look like this:

[image: ]


A note about old vs new-style webhooks

These days slack suggests users configure webhooks through an app, but you can still set up an old-style webhook [https://my.slack.com/apps/A0F7XDUAZ-incoming-webhooks]. Jarjar was written to use the old style-hooks, but both kinds will work - with one caveat.

Under the new webhook setup, individual webhooks send messages to a single channel, so Jarjar’s channel='@me' functionality will not work. Jarjar expects to use an old-style hook so it requires a channel to be specified even if you are using a new-style hook (sorry about that!).









          

      

      

    

  

    
      
          
            
  
Using the jarjar command line tool

The CLT provides basic posting functionality like in the python API but it also provides a useful task execution facility.


Posting to your team

The jarjar CLT offers all the functionality of the python API, except for posting attachments (sorry). Posting messages is super easy though!

You can use your defaults from .jarjar

jarjar --message 'Meesa jarjar binks!'





Or not.

jarjar -m 'Hi, everyone!!' --webhook '<your-url>' --channel '#general'








Running processes with jarjar

We use jarjar to run a lot of longer processes when we don’t want to keep our terminal sessions around. You can use jarjar for this sort of thing.

jarjar sleep 3600





Generally speaking it is safer to wrap your program in quotes so that its clear which arguments are meant for jarjar and which are meant for your task.

jarjar 'python3 simulations.py --niters 100 --out results.csv'





Now you can head out for some lunch. Here’s what’s going on under the hood:


	Start up a screen [https://www.gnu.org/software/screen/]. The screen can have a custom name (using the -S or  --screen_name flags) but if you don’t provide one it’ll be named using the program you provide. Above, the screen was named sleep_3600.


	Run your process in that screen. If you want you can attach to the screen (using the -a, -r, or  --attach flags) and see the magic happen.


	Send a message when the process is complete. If you specified a message (using the -m or  --message flags) jarjar will send it. Jarjar will then kill your screen if:


	You don’t tell it to keep the screen (using the --no-exit flag).


	You didn’t attach to it (using the -a, -r, or  --attach flags).


	The program you ran exited with status 0.









Examples

# send a custom message
jarjar python run-simulations.py --message 'Simulations Complete!'

# name your screen
jarjar sleep 1 --screen-name 'snooze'

# watch the magic happen
jarjar <program> --attach

# keep the screen around for debugging
jarjar <program> --no-exit

# show jarjar version
jarjar --version

# get help
jarjar --help










Argument Reference


	-h, --help. Show help message.


	-v, --version. Show jarjar version.


	-m, --message. Specify message to send. This best done in single-quotes (jarjar -m 'hi') but jarjar rolls with the punches (like jarjar -m hi).


	-w, --webhook. Specify webhook to post to.


	-c, --channel. Specify channel to post to. Unlike in the python module, only one channel can be supplied at a time. Since # is interpreted as a shell comment, you’ll want to put this in single quotes (jarjar -c '#general').


	-a, -r, --attach. Attach to the screen once the program has started running.


	-S, --screen_name. Specify the name of the screen created for the program.


	--no-exit. Don’t exit the screen even if the program exited successfully.


	--force-exit. Exit the screen regardless of your task’s exit status.


	--no-jarjar. Run a program but don’t send a slack message about it. In this case jarjar is just acting as a screen generator.










          

      

      

    

  

    
      
          
            
  
API Documentation





	
class jarjar.jarjar(config=None, **defaults)

	A jarjar slack messenger.

This is largely a wrapper around functionality in requests.post() with
facilities to store and set default values for the desired message to
send, channel to post within, and slack team webhook.

Inference for these values proceeds as follows.


	Any argument provided to text() or
attach() supersedes all defaults.


	Any argument provided to this class at initialization.


	Defaults within a config file at a user-specified path
(config='...').


	Defaults within a config file .jarjar, within the working directory.


	Defaults within .jarjar, located in the user’s home directory.




The config files (for numbers 3-5) look like:

channel="@username"
message="Custom message"
webhook="https://hooks.slack.com/services/your/teams/webhook"





If the channel or webhook arguments are never provided, an error is
raised. If the channel and webhook are provided but not a message or
attachment, jarjar will make something up.

If a value is found in multiple places, the value from the highest priority
location is used.


	Parameters

	
	configstr, list

	Optional. Path(s) to jarjar configuration file(s). If a list,
configs should be in descending order of priority.



	messagestr

	Optional. Default message to send.



	channelstr,  list

	Optional. Name of the default channel to post within.



	webhookstr

	Optional. Webhook URL for the default slack team.









Methods







	attach(attach, channel=None, webhook=None, message=None)

	Send an attachment. User may also include a text message.



	text(message, channel=None, webhook=None, attach=None)

	Send a text message. User may also include an attachment.



	set_webhook(webhook)

	Set jarjar’s default webhook.



	set_channel(channel)

	Set jarjar’s default channel.



	set_message(message)

	Set jarjar’s default message.



	decorate(func=None, **jj_kwargs)

	Decorate a function to send a message after execution.



	register_magic(name=’jarjar’, quiet=False, **kwargs)

	Register a magic for Jupyter notebooks.







	
attach(attach=None, **kwargs)

	Send an attachment.

This method is largely identical to text(),
only differing in the first argument (attach), which is expected
to be a dictionary.


	Parameters

	
	attachdict

	Attachment data. Optional but weird if you don’t provide one.
All values are converted to string for the slack payload so don’t
sweat it.



	messagestr

	Text to send. Optional. If attach is None and there is no
default and you don’t provide one here, jarjar just wings it.



	channelstr,  list

	Optional. Name of the channel to post within.
Can also be a list of channel names; jarjar will post to each.



	webhookstr

	Optional. Webhook URL for the slack team.







	Returns

	
	responserequests.models.Response

	Requests response object for the POST request to slack.














	
decorate(func=None, **jj_kwargs)

	Decorate a function to send a message after execution.

This is a simple decorator to compute elapsed time and catch
exceptions within a function execution. You can set the usual
jarjar kwargs within the decorator. Decorate your function like:

jj = jarjar(channel='...')
@jj.decorate
def simulate(x):
    # ...

@jj.decorate(message='...')
def simulate(x):
    # ...






	Parameters

	
	**jj_kwargskeyword arguments

	Arguments passed to attach().














	
register_magic(name='jarjar', quiet=False, **kwargs)

	Register a jarjar Jupyter cell magic.

This magic sends a message whenever its cell executes. The message
includes attachments for elapsed time and shows the exception trace if
there was one.

Use it like:

jj = jarjar(channel='...')
jj.register_magic(message='Cell executed!')

# %% --- new cell ---
%%jarjar
# ... do some stuff! ...






	Parameters

	
	namestr

	Name of the magic to register. Default: ‘jarjar’.



	quietboolean

	Flag indicating whether to print the name of the magic.



	**kwargskeyword arguments

	Arguments passed to attach().














	
set_channel(channel)

	Set default channel.


	Parameters

	
	channelstr

	Name of the channel to post within.














	
set_message(message)

	Set default message.


	Parameters

	
	messagestr

	Default message to send.














	
set_webhook(webhook)

	Set default webhook.


	Parameters

	
	webhookstr

	Webhook URL for the slack team.














	
text(message=None, **kwargs)

	Send a text message.

This method is largely identical to attach(), only
differing in the first argument (message), which is expected to be
a string.


	Parameters

	
	messagestr

	Text to send. Optional but weird if you don’t provide one.
If attach is None and there is no default and you don’t provide
one here, jarjar just wings it.



	attachdict

	Attachment data. Optional. All values are converted to string for
the slack payload so don’t sweat it.



	channelstr,  list

	Optional. Name of the channel to post within.
Can also be a list of channel names; jarjar will post to each.



	webhookstr

	Optional. Webhook URL for the slack team.







	Returns

	
	responserequests.models.Response

	Requests response object for the POST request to slack.





















          

      

      

    

  

    
      
          
            
  
Python API Workflows

Jarjar is great for letting you know when come snippet of code has finished
executing, but configuring things properly can be a little bit of a hassle.

A common workflow involves writing your code and then throwing a jarjar call
at the end:

from jarjar import jarjar
jj = jarjar()

def fun(long_list):
  results = []
  for i in long_list:
    if i == 'something':
      results.append('something')
    else:
      results.append('something else')
  return results

# run the process, notify on completion
results = fun(a_long_list)
jj.text('Process complete!')





That looks good, but what if an exception was raised on the way? So maybe you
edit like so:

try:
  results = fun(my_long_list)
  jj.text('Process complete!')
except Exception:
  jj.text('Process Failed?')





That’s great. But what if you want to run many such processes? Or what if you
want to run the same process twice, getting a notification each time? What if
you wanted to include the traceback within the message if there was an
exception?

You’ll end up writing a lot more code just to handle jarjar notifications.
Luckily, we wrote that code for you.


Jarjar decorator

You can decorate a function and jarjar will handle exceptions for you. You’ll
get a notification whenever the function exits, and it will include the
traceback if there was an exception:

@jj.decorate
def fun(long_list):
  # ...

results = fun(my_long_list)








Jupyter cell magic

Jupyter notebooks are becoming a standard in scientific work. Packaged with
jarjar is a Jupyter magic so that users can be notified about a cell’s
execution.

You first need to register the magic, and then you can use it freely. In one
cell:

from jarjar import jarjar
jj = jarjar()

jj.register_magic()





Then in a later cell:

%%jarjar
results = fun(my_long_list)





You’ll get a notification whether your cell executed successfully or not, and it
will include the traceback if there was an exception.







          

      

      

    

  

    
      
          
            

   Python Module Index


   
   j
   


   
     		 	

     		
       j	

     
       	
       	
       jarjar	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | D
 | J
 | R
 | S
 | T
 


A


  	
      	attach() (jarjar.jarjar method)


  





D


  	
      	decorate() (jarjar.jarjar method)


  





J


  	
      	jarjar (class in jarjar)

      
        	(module)


      


  





R


  	
      	register_magic() (jarjar.jarjar method)


  





S


  	
      	set_channel() (jarjar.jarjar method)


  

  	
      	set_message() (jarjar.jarjar method)


      	set_webhook() (jarjar.jarjar method)


  





T


  	
      	text() (jarjar.jarjar method)


  







          

      

      

    

  _static/ajax-loader.gif





_images/positive-vibes.png
‘ jar-jar P .40 PM
@mark, yousa the best!





_images/simulations-complete.png
‘ ja APP 431 PM
Simulations Complete
Time Elapsed Exit Status

1:05:06 0

Today at 431 PM





_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/down.png





_images/backups-failed.png
‘ jar-jar ape 4340

Backups failed :-(you might wanna check this out.
Exit Status Time Elapsed
127 003:18

Today at 4:34 PM





_images/g9RG16j.png
‘ jar-jar App 9:24 pM
This is what messages from this service will look like in Slack.





_images/nap.png
Jar-jar ae s03pM
Meesa took a nap!

Exit Status Time Elapsed
0 0:00:01

Today at 5:03 PM





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to jarjar’s documentation!
        


        		
          Installing jarjar
          
            		
              Just use pip.
            


            		
              Config File
            


            		
              Configuring Slack
              
                		
                  A note about old vs new-style webhooks
                


              


            


          


        


        		
          Using the jarjar command line tool
          
            		
              Posting to your team
            


            		
              Running processes with jarjar
              
                		
                  Examples
                


              


            


            		
              Argument Reference
            


          


        


        		
          API Documentation
        


        		
          Python API Workflows
          
            		
              Jarjar decorator
            


            		
              Jupyter cell magic
            


          


        


      


    
  

_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





